Renegade Avengance
Would you like to react to this message? Create an account in a few clicks or log in to continue.


No point in fighting back, don't bother running... We will have Vengance.
 
HomePortalLatest imagesSearchRegisterLog in
Welcome to Renegade Avengance, If you are looking for a War please contact one of the Owners. If not Stay and chat for awhile.

 

 Compton scattering

Go down 
AuthorMessage
Guest
Guest




Compton scattering    Empty
PostSubject: Compton scattering    Compton scattering    Icon_minitimeTue Dec 14, 2010 4:02 am

In physics, Compton scattering is a type of scattering that X-rays and gamma rays undergo in matter. The inelastic scattering of photons in matter results in a decrease in energy (increase in wavelength) of an X-ray or gamma ray photon, called the Compton effect. Part of the energy of the X/gamma ray is transferred to a scattering electron, which recoils and is ejected from its atom (which becomes ionized), and the rest of the energy is taken by the scattered, "degraded" photon.

Inverse Compton scattering also exists, where the photon gains energy (decreasing in wavelength) upon interaction with matter. Since the wavelength of the scattered light is different from the incident radiation, Compton scattering is an example of inelastic scattering, but the origin of the effect can be considered as an elastic collision between a photon and an electron. The amount the wavelength changes by is called the Compton shift. Although nuclear compton scattering exists[1], Compton scattering usually refers to the interaction involving only the electrons of an atom. The Compton effect was observed by Arthur Holly Compton in 1923 at Washington University in St. Louis and further verified by his graduate student Y. H. Woo in the years following. Compton earned the 1927 Nobel Prize in Physics for the discovery.

The effect is important because it demonstrates that light cannot be explained purely as a wave phenomenon. Thomson scattering, the classical theory of an electromagnetic wave scattered by charged particles, cannot explain low intensity shifts in wavelength (Classically, light of sufficient intensity for the electric field to accelerate a charged particle to a relativistic speed will cause radiation-pressure recoil and an associated Doppler shift of the scattered light[2], but the effect would become arbitrarily small at sufficiently low light intensities regardless of wavelength.) Light must behave as if it consists of particles to explain the low-intensity Compton scattering. Compton's experiment convinced physicists that light can behave as a stream of particle-like objects (quanta) whose energy is proportional to the frequency.

The interaction between electrons and high energy photons (comparable to the rest energy of the electron, 511 keV) results in the electron being given part of the energy (making it recoil), and a photon containing the remaining energy being emitted in a different direction from the original, so that the overall momentum of the system is conserved. If the photon still has enough energy left, the process may be repeated. In this scenario, the electron is treated as free or loosely bound. Experimental verification of momentum conservation in individual Compton scattering processes by Bothe and Geiger as well as by Compton and Simon has been important in disproving the BKS theory.

If the photon is of lower energy, but still has sufficient energy (in general a few eV to a few KeV, corresponding to visible light through soft X-rays), it can eject an electron from its host atom entirely (a process known as the photoelectric effect), instead of undergoing Compton scattering. Higher energy photons (1.022 MeV and above) may be able to bombard the nucleus and cause an electron and a positron to be formed, a process called pair production.

custom web design firm
legal jobs
Back to top Go down
 
Compton scattering
Back to top 
Page 1 of 1

Permissions in this forum:You cannot reply to topics in this forum
Renegade Avengance :: Discussion-
Jump to: